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Using fiber bundle theory, we construct the universal covering group of U(n),
Ũ(n), and show that Ũ(n) is isomorphic to the semidirect product SU(n) Vs R.
We give a bijection between the set of projective representations of U(n) and the
set of equivalence classes of certain unitary representations of SU(n) Vs R.
Applying Bargmann’s theorem, we give explicit expressions for the liftings of
projective representations of U(n) to unitary representations of SU(n) Vs R. For
completeness, we discuss the topological and group theoretic relations between
U(n), SU(n), U(1), and Zn.

1. INTRODUCTION

The universal covering group G̃ of a connected Lie group G (Warner,
1983) and its associated projection G̃ → G play an important role in many
physical applications. This is due to the fact that G̃ has representations which
do not come from representations of G, the so-called spinor representations
of G. The most important and best known examples are the rotations in 3-
dimensional Euclidean space, SU(2) → SO(3), and the Lorentz transforma-
tions in 4-dimensional Minkowski spacetime, SL2 (C) → SO0(3, 1).

In the Abelian case, the universal covering group of the circle, R →
U(1), is the vehicle through which virtual classical paths contribute to the
Feynman path integral expression for the quantum transition amplitudes in
nonrelativistic quantum mechanics (Feynman and Hibbs, 1965).

On the other hand, projective representations of symmetry groups appear
naturally in quantum mechanics, since, on one hand, the pure states of any
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physical system are represented by rays in the corresponding Hilbert space,
and, on the other, the unitary or antiunitary operators representing the symme-
try transformations are required to preserve transition probabilities, that is,
the square of the modulus of the transition amplitudes, but not the transition
amplitudes themselves; therefore the operators are determined only up to a
phase. For Lie groups, however, these extra phases can be eliminated, that
is, one can pass to a truly unitary representation, when the symmetry group
satisfies the conditions of Bargmann’s theorem (Bargmann, 1954), namely,
the group should be simply connected and the second cohomology of its Lie
algebra should be equal to zero (see Section 4). If the group is connected,
but not simply connected, one passes to its universal covering group.

One should emphasize, however, that the quantum physical symmetry
group is determined by the projective representation (Belinfante and Kol-
man, 1972).

In this paper we study the universal covering group Ũ(n) of U(n), the
automorphism group of the Hilbert space Cn, and show that Ũ(n) is isomorphic
to the semidirect product SU(n) Vs R (Section 3). From the physical point
of view, U(n) is the internal symmetry group of a system of n identical
noninteracting harmonic oscillators (Bargmann and Moshinsky, 1960).

In Section 4 we discuss some preliminary results on unitary and projec-
tive representations. In particular, we study the concept of strong continuity
of a representation, and show that the group of unitary transformations of a
Hilbert space *, 8(*), is a topological group.

In Section 5 we give a bijection between the set of projective representa-
tions of U(n) and the set of orbits of certain unitary representations of SU(n)
Vs R under the action of the group of one-dimensional representations of
SU(n) Vs R.

In Section 6 we construct all the unitary representations of Ũ(n) associ-
ated to a projective representation of U(n).

As an introduction, we discuss, in Section 2, the topological and group
theoretic relations between U(n), U(1), SU(n), and Zn.

2. THE GROUPS U(N)

The unitary group U(n), n 5 1, 2, . . . , is the group of automorphisms
of the Hilbert space (Cn, ^ , &) where ^ , & is the Hermitian scalar product
^

›
z ,

›
w & 5 (n

k51 zkwk. If A P U(n) and A* is the transpose conjugate matrix,
then A*A 5 I, i.e., A* 5 A21, so .det A. 5 1 and dimR U(n) 5 n2. Here
U(n) is a Lie group and SU(n) is the closed Lie subgroup consisting of
matrices whose determinant is 1. In particular U(1) is the unit circle or 1-
sphere S1.
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Let wn: U(1) 3 SU(n) → U(n) be given by wn(z, A) :5 zA. Since (zA)* 5
zA* 5 (zA)21, wn is well defined. Now we show that wn is a surjective Lie
group homomorphism with kernel Zn: (i) wn((z, A)(z8, A8)) 5 wn(zz8, AA8)
5 (zz8)(AA8) 5 (zA)(z8A8) 5 wn(z, A)wn(z8, A8), i.e., wn is a group homomor-
phism; (ii) if B P U(n), then (detB)21/nB P SU(n) and wn((detB)1/n, (detB)21/

nB) 5 B, i.e. wn is onto; (iii) let (e2iu, (aij )) be in ker(wn), i.e.,
e2iu(aij ) 5 I; then aij 5 0 for i Þ j and a11 5 . . . 5 ann 5 eiu; since det(aij )
5 einu 5 1, then u 5 2pm/n for m 5 0, 1, . . . , n 2 1, and therefore ker(wn)
5 {(1, I ), (e2i2p/n, ei2p/nI ), . . . , (e2i2p(n21)/n, ei2p(n21)/nI )} > Zn. Then one
has an isomorphism of short exact sequences of Lie groups and Lie group
homomorphisms given by the following diagram:

1 →Zn →
in

U(1) 3 SU(n) →
wn

U(n) → 1
| | Fn↑>

1 → Zn U(1) 3 SU(n) → 1→
in →

Pn U(1) 3 SU(n)
Zn

where in is the inclusion in(k) 5 (e2i2pk/n, ei2pk/nI ), k 5 0, 1, . . . , n 2 1, pn

is the canonical projection pn(z, A) 5 [z, A], and Fn is the Lie group isomor-
phism Fn([z, A]) 5 wn(z, A) 5 zA.

On the other hand, d: U(n) → U(1) given by A ° d(A) :5 detA is
a Lie group homomorphism with ker(d ) 5 SU(n). Then one has another
isomorphism of short exact sequences of Lie groups and Lie group homomor-
phisms given by the following diagram:

→ 11 → SU(n) →i
U(n) →d

U(1)
| | >↓c

1 → SU(n) U(n) → 1→i →p U(n)
SU(n)

where i is the inclusion i(A) 5 A, p is the canonical projection p(B) 5
BSU(n), and c is the group isomorphism c(z) 5 (z

0
0
I ) SU(n) where I is the

(n 2 1) 3 (n 2 1) unit matrix. Since p is a principal SU(n)2bundle, then
U(n) →d

U(1) is an SU(n)-principal bundle over S1, and since the set of
isomorphism classes of principal SU(n)-bundles over the 1-sphere kSU(n)(S1)
is in one-to-one correspondence with P0(SU(n)) > 0, then the bundle d is
trivial. The global section s: U(1) → U(n), z ° s(z) :5 (z

0
0
I ) induces the

SU(n)-bundle isomorphism

SU(n) SU(n)
↓ ↓

U(n) →
Cn

U(1) 3 SU(n)
d' "p1

U(1)
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given by Cn(B) 5 (z, A) with z 5 detB and A 5 s(z)B, where p1(z, A) 5
z. Note that Cn is not a Lie group homomorphism (Cn(BB8) 5 (zz8,
s(z)s(z̄8)BB8) Þ Cn(B)Cn(B8) since for all B P U(n), s(z̄8)B 5 Bs(z̄8) only
if z8 5 1), but only a diffeomorphism of smooth manifolds; its inverse is
given by C21

n (z, A) 5 s(z)A.
In summary, we have the commutative diagram

U(1) 3 SU(n)
ZnFn" 'tn

U(n) →
Cn

U(1) 3 SU(n)

where tn 5 Cn + Fn is given by tn([z, A]) 5 (zn, s(zn)z A) and is a diffeomorph-
ism of smooth manifolds, but not a Lie group isomorphism. So, wn: U(1) 3
SU(n) → U(n) is an n-covering space of U(n) by a space diffeomorphic to
it. (This result is similar to that of the double covering of the circle, the Z2-
bundle S1 → S1, z ° z2.)

3. THE UNIVERSAL COVERING GROUP Ũ(N)

Since topologically U(n) > U(1) 3 SU(n), then P1(U(n)) > P1(U(1)
3 SU(n)) > P1(U(1)) % P1(SU(n)) > Z % 0 > Z, and so the universal
covering group of U(n), Ũ(n), is a principal Z-bundle j: Z → Ũ(n) → U(n).

On the other hand, the universal principal Z-bundle is jZ: Z → R→
exp

U(1)
with exp(t) 5 ei2pt. Then j is a pullback of jZ. We have found a natural map
between U(n) and U(1), namely the determinant d. We shall prove that

Ũ(n) > d*(R) > SU(n) Vs R

Remark 1. The first isomorphism was given by Fulton and Harris (1991),
but not its relation to fiber bundle theory.

Proposition 1. Let d*(jZ) be the pullback bundle of jZ by the determinant
d : U(n) → U(1):

Z Z
↓ ↓

d*(R) →
p2

R
p1↓ ↓exp

U(n) →d
U(1)

where p1 and p2 are the projections in the first and second factor, respectively.
Then p1 is the universal covering group of U(n).

Proof. Since d and exp are group homomorphisms, d*(R) is a subgroup
of U(n) 3 R, and clearly p1 and p2 are homomorphisms. The subgroup
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d*(R) is the subset of U(n) 3 R where the maps d and exp coincide, and
U(1) is Hausdorff, therefore d*(R) is closed. Since U(n) 3 R is a Lie group,
d*(R) is also a Lie group. Clearly, the maps p1 and p2 are smooth.

Now exp: R → U(1) is a covering space with fiber Z. Therefore p1:
d*(R) → U(n) is also a covering space with fiber Z. Hence, we have a
monomorphism (p1)*

: P1(d*(R)) → P1(U(n)), and the quotient P1(U(n))/
(p1)*

(P1(d*(R))) is isomorphic to Z. Since P1(U(n)) > Z, then P1(d*(R))
> 0. QED

Definition 1. Consider the Lie groups SU(n) and R. We define a smooth
action SU(n) 3 R → SU(n) given by (A, t) ° A ? t :5 s2tAst , where
st :5 s(ei2pt). Using this action, we have the semidirect product SU(n) Vs

R, whose underlying manifold is SU(n) 3 R, but with product given by the
formula (A, t)(A8, t8) :5 ((A ? t8)A8, t 1 t8). One can easily check that this
is a Lie group.

Theorem 1. The universal covering group of U(n) is given by the map
p: SU(n) Vs R → U(n), where p(A, t) 5 s(ei2pt)A.

Proof. As mentioned above, SU(n) Vs R is a Lie group and a simple
calculation shows that p is a homomorphism. Since p is a composition of
smooth maps, it is smooth.

Let v: SU(n) Vs R → d*(R) be the map given by v(A, t) 5 ( p(A, t),
t). Clearly v is smooth and one can easily verify that it is a homomorphism
of Lie groups, whose inverse is given by v21(B, t) 5 (s(e2i2pt)B, t). Then
we have the following commutative diagram:

SU(n) Vs R →v d*(R)
p' "p1

U(n)

By Proposition 1, d*(R) is the universal covering group of U(n), therefore
SU(n) Vs R is also the universal covering group of U(n). QED

Remark 2. In the literature one sometimes finds that the universal cov-
ering group of U(n) is the direct sum of SU(n) and R (Cornwell, 1984);
however, by the theorem above, this is not the case.

Remark 3. For the particular case n 5 2, F2 in Section 2 says that as
a group, U(2) is constructed from the unique three spheres which are groups,
namely S 0, S1, and S 3, respectively, the unit real, complex, and quaternionic
numbers (Aguilar et al., 1998), and one has the commutative diagram
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S1 3 S 3

S 0

F2" 't2

U(2) →
C2

S1 3 S 3

where F2 is a group isomorphism, and C2 and t2 are diffeomorphisms. The
explicit formulas for this case are the following: p2(z, A) [ [z, A] 5 {(z, A),
(2z, 2A)}, F2([z, A]) 5 zA, and

C21 a b
2beil aeil2 5 1eil, 1ae2il be2il

2beil aeil 22
where .a.2 1 .b.2 5 1 and l P [0, 2p). [Another way to show the topological
equivalence of U(2) and U(1) 3 SU(2) is to start from the bundle U(1) →
U(2) → U(2)/U(1) and use the fact that U(2)/U(1) > S 3; since P2(U(1)) >
0, then the bundle is trivial, and so U(2) > U(1) 3 S 3.]

The product in the universal covering Ũ(2) > SU(2) Vs R is given by

11 a b
2b a2, t211 a8 b8

2b8 a82, t82
5 11aa8 2 bb8e2i2pt8 ab8 1 ba8e2i2pt8

2ab8 2 ba8ei2pt8 aa8 2 bb8ei2pt8 2, t 1 t82

4. PROJECTIVE AND UNITARY REPRESENTATIONS

Let * be a complex Hilbert space with the standard norm topology
|v|2 5 ^v, v& for any v P *. Let *̂ be the projective space of its 1-dimensional
subspaces with the quotient topology relative to the projection v ° v̂ :5
C*v, for v Þ 0. Let Aut(*̂) be the group of automorphisms of *̂, where a
bijection T: *̂ → *̂ is an automorphism if ^T(v̂1), T(v̂2)& 5 ^v̂1, v̂2&, where
^v̂1, v̂2& (the transition probability in quantum mechanics) is given by
.^v1, v2&.2/|v1|

2|v2|
2. Let 8̃(*) be the group of unitary or antiunitary transfor-

mations of *. Let p: 8̃(*) → Aut(*̂) be the projection p(A)(v̂ ) 5 Â(v̂ ) :5
Âv, and i: U(1) → 8̃(*) the inclusion i(z) 5 zId. Then Wigner’s theorem
(Wigner, 1959) says that the following sequence is exact:

1 → U(1) →i
8̃(*) →p Aut(*̂) → 1

i.e., any probability-preserving transformation of the projective Hilbert space
is the image of a unitary or antiunitary transformation of the Hilbert space
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itself, and, moreover, if p(A1) 5 p(A2), then A2 5 eiwA1 with w P [0, 2p)
(Simms, 1968). If 8(*) is the subgroup of 8̃(*) of unitary operators, then
the sequence

1 → U(1) →i
8(*) →p 8(*̂) → 1

is also exact, where 8(*̂) is the image of 8(*) under p, and is a subgroup
of Aut(*̂). 8(*) is given the strong operator topology, that is, the smallest
topology which makes continuous the maps Eh: 8(*) → *, Eh(A) :5 A(h),
for h P *, and 8(*̂) is given the quotient topology relative to the projection
A . Â.

Definition 2. If X is a topological space, then f: X → 8(*) is said to
be strongly continuous if it is continuous when 8(*) is given the strong
operator topology. Clearly, f is strongly continuous if and only if Eh + f is
continuous for each h P *.

On the other hand, Bargmann’s theorem (Bargmann, 1954) says that if
G is a connected and simply connected Lie group with second cohomology
H 2(Lie(G); R) > 0, then for any projective representation of G on *, i.e.,
for any continuous group homomorphism r: G → 8(*̂),there exists a unitary
representation of G on *, i.e., a strongly continuous group homomorphism
r̂ : G → 8(*) such that p + r̂ 5 r (Simms, 1968). r̂ is called a lifting of
r. Clearly, Ũ(n) satisfies the conditions of Bargmann’s theorem, since by a
theorem of Chevalley and Eilenberg (1948), the real cohomology of a compact
and connected Lie group is isomorphic to the cohomology of its Lie algebra,
and H 2(U(n); R) > 0 (Itô, 1993). In Theorem 4 below, we give an explicit
expression for the lifting r̂. Moreover, in Proposition 3, we shall show that
r̂ is in fact a homomorphism of topological groups.

The following proposition gives a useful characterization of strongly
continuous maps.

Proposition 2. Let G be a topological group and let f : G → 8(*) be
a group homomorphism. Let f: G 3 * → * be the action given by f (g, h) :5
f (g)(h). Then f is continuous if and only if f is strongly continuous.

Proof. (⇒) Assume that f is continuous, and consider the composition
f + ah with ah: G → G 3 * given by ah(g) 5 (g, h). Since ah is clearly
continuous, then f + ah is continuous. But f + ah 5 Eh + f, i.e., f is strongly
continuous.

(⇐) Assume now that f is strongly continuous. Let (g0, h0) P G 3 *.
We shall prove that f is continuous at (g0, h0). For this, let {(gl, hl)}lPL be
a net in G 3 * which converges to (g0, h0). We will show that the net {f (gl,
hl)}lPL converges to f (g0, h0).



1004 Aguilar and Socolovsky

Let (g, h) be any point in G 3 *. Then we have the following inequality
for the norm of f (g, h ) 2 f (g0, h0) 5 f (g)(h) 2 f (g0)(h0):

| f (g)(h) 2 f (g0)(h0)|

5| f (g0)(( f (g0))21f (g)(h) 2 h0)|

5| f (g0)( f (g21
0 g)(h) 2 h0)|

5| f (g21
0 g)(h) 2 h0|

5| f (g21
0 g)(h 2 h0) 1 f (g21

0 g)(h0) 2 h0|

#| f (g21
0 g)(h 2 h0)| 1 | f (g21

0 g)(h0) 2 h0|

5|h 2 h0| 1 | f (g21
0 g)(h0) 2 h0| (∗)

Notice that in the third and sixth steps we used the fact that f takes
values in the unitary group. Now consider:

(i) Let m0 be the composition of the product in G and the inclusion
G → G 3 G given by g . (g21

0 , g). Since m0 is continuous and m0(g0) 5 e,
and the net {gl}lPL → g0, then the net {m0(gl) 5 g21

0 gl}lPL → e.
(ii) Since f is strongly continuous, then the composition

G→f
8(*) →

Eh0 * is continuous; then Eh0 + f + a given by g . f (g21
0 g)(h0) is

also continuous. Since {gl}lPL → g0, then { f (g21
0 gl)(h0)}lPL → h0.

(iii) Let « . 0; then there exists l0 P L such that for all l . l0,
| f (g21

0 gl)(h0) 2 h0| , «/2; on the other hand, since {hl}lPL → h0, then there
exists l1 P L such that for all l . l1, |hl 2 h0| , «/2. Since L is a directed
set, then there exists l P L such that l $ l0 and l $ l1. Then for all l $
l we have, by the inequality (∗), | f (gl)(hl) 2 f (g0)(h0)| # |hl 2 h0| 1
| f (g21

0 gl)(h0) 2 h0| , «/2 1 «/2 5 «. Therefore, { f (gl, hl)}lPL converges
to f (g0, h0), i.e., f is continuous. QED

Remark 4. We have two canonical subgroups of SU(n) Vs R. The sub-
group {(A, 0).A P SU(n)} which is normal, and the subgroup {(I, t).t P R},
which is not normal; the intersection of both subgroups is trivial, so that any
element (A, t) can be written uniquely as the product (A, t) 5 (I, t)(A, 0). In
the theory of unitary representations of semidirect products (Sternberg, 1994),
one asumes that the normal subgroup is Abelian. This is the case of the
proper orthochronous Poincaré group which is the semidirect product of R4

and SO0(3, 1), where R4 is normal and Abelian. However, in our case, SU(n)
is not Abelian.

Proposition 3. The group 8(*), with the strong topology, is a topologi-
cal group.
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Proof. (i) Let m: 8(*) 3 8(*) → 8(*) be the product in 8(*), i.e.,
m(R, S) 5 R + S. We shall show that, for each h P *, the composition Eh +
m is continuous. For this, let {(Rl, Sl)}lPL be a net in 8(*) 3 8(*) which
converges (in the strong topology) to (R0, S0). Let « . 0; since {Rl}lPL →
R0 and {Sl}lPL → S0, there exist l1 and l2 in L such that |(Rl 2 R0)(S0(h))|
, «/2, whenever l $ l1, and |(Sl 2 S0)(h)| , «/2 whenever l $ l2. Now,

|Rl + Sl(h) 2 R0 + S0(h)|

5 |(Rl 2 R0)(S0(h)) 1 Rl(Sl(h) 2 S0(h))|

# |(Rl 2 R0)(S0(h))| 1 |Rl(Sl(h) 2 S0(h))|

5 |(Rl 2 R0)(S0(h))| 1 |(Sl 2 S0(h))|

Let l be an element in L such that l $ l1 and l $ l2. If l $ l, then
|Rl + Sl(h) 2 R0 + S0(h)| , «/2 1 «/2 5 «. Therefore {Rl + Sl(h)} → R0 +
S0(h) and then Eh + m is continuous.

(ii) It is known that the weak and the strong topologies for the set of
bounded operators on * coincide in 8(*). To show that the map 8(*) →
8(*) given by R . R21 is continuous, we shall use the weak topology. Let
{Rl}lPL be a net in 8(*) which converges, in the weak topology, to R0. Let
h and h8 be elements in *. Then, given « . 0, there exists l0 in L such that
.^h, (Rl 2 R0)(h8)&. , « whenever l . l0. Now, since the operators are
unitary, R* 5 R21 and R*0 5 R21

0 . Hence (Rl 2 R0)* 5 R*l 2 R*0 5 R21
l 2

R21
0 , and the inequality above can be written as « . .^h, (Rl 2 R0)(h8)&. 5

.^(Rl 2 R0)*(h),h8&. 5 .^(R21
l 2 R21

0 )(h), h8&. whenever l . l0. Therefore
{R21

l }lPL → R21
0 , so that the map R . R21 is continuous at any point

R0. QED

Notice that since p: 8(*) → 8(*̂) is an open map, then p 3 p is
also open. Therefore 8(*̂) is also a topological group.

Remark 5. Naimark (1964) showed that the composition of bounded
operators on an infinite dimensional Hilbert space is not strongly continuous.
However, when the composition is restricted to the unitary operators, the
above proposition shows that the composition is indeed continuous, contrary
to what is claimed in Simms (1968, p. 10).

Corollary 1. The action 8(*) 3 * → * given by (A, h) . A(h)
is continuous.

Proof. In Proposition 2, take G 5 8(*) and f 5 id. QED

Note. Since we always use the strong topology on 8(*), a strongly
continuous map with codomain 8(*) will be called continuous for short.
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5. CLASSIFICATION OF PROJECTIVE REPRESENTATIONS

In this section we give a bijection between the set of projective represen-
tations of U(n) and the set of equivalence classes of certain unitary representa-
tions of SU(n) Vs R.

Definition 3. Let l1, l2: SU(n) Vs R → U(1) be continuous homo-
morphisms. We define l1l2: SU(n) Vs R → U(1) by (l1l2)(a) 5 l1(a)l2(a).
This map is continuous since it is the composition of the following continu-
ous maps:

SU(n) Vs R →D (SU(n) Vs R) 3 (SU(n) Vs R) —–→
l13l2

U(1) 3 U(1) →n
U(1)

where D(a) 5 (a, a) and n is the product in U(1). Moreover, since U(1)
is Abelian, the product n is a homomorphism. Therefore l1l2 is also a
homomorphism because it is a composite of homomorphisms. The rule (l1,
l2) . l1l2 gives a group structure to the set of continuous homomorphisms,
with identity 1(a) 5 1 and inverses l21(a) 5 l(a)21. We denote this group
by (SU(n) Vs R)* [ U0. It is the group of one-dimensional (irreducible)
representations of SU(n) Vs R. (In Proposition 9, we will show that U0 is
isomorphic to R.)

Let i: Z → SU(n) Vs R be the inclusion i(k) 5 (I, k); clearly i(Z) 5 ker( p).

Definition 4. We denote by 8(SU(n) Vs R) [ U the set of unitary
representations b: SU(n) Vs R → 8(*) such that b(i(Z)) , U(1)Id, and by
hom(U(n), 8(*̂)) [ P the set of projective representations of U(n). We
define a map Q: U → P as follows: we associate to b the homomorphism
Q(b): U(n) → 8(*̂) given by Q(b)( p(a)) 5 p + b(a), i.e., Q(b) is the
homomorphism in the quotient groups, induced by b.

Lemma 1. The map Q: U → P is well defined and it is surjective.

Proof. The homomorphism b maps i(Z) 5 ker( p) into U(1)Id 5 ker(p);
therefore the homomorphism Q(b) is well defined. Since p is a covering
space, it is an open map, so that U(n) has the quotient topology. Hence Q(b)
is continuous and it is then a projective representation.

Now let r: U(n) → 8(*̂) be a projective representation. As we did
before, we can use Bargmann’s theorem for the representation r + p to get
a representation r̂ : SU(n) Vs R → 8(*) such that p + r̂ 5 r + p; clearly
r̂(i(Z)) , U(1)Id. Hence r̂ P U. Since p + r̂ 5 Q(r̂) + p, then r + p 5
Q(r̂) + p, and, since p is surjective, r 5 Q(r̂). Therefore Q is surjective. QED

In order to study the map Q, we will define an action of the group U0

on U.
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Proposition 4. There is a free action U0 3 U → U given by (l, b) .

l ? b, where (l ? b)(a) 5 l(a)Id + b(a).

Proof. (i) The map l ? b can be written as the following composite:

SU(n) Vs R →D (SU(n) Vs R) 3 (SU(n) Vs R)

—→l3b
U(1) 3 8(*) —→i3Id

8(*) 3 8(*) →m 8(*)

By Proposition 3, m is continuous, therefore l ? b is the composition of
continuous maps, so it is continuous.

(ii) Since (l ? b)(a1a2) 5 l(a1a2)Id + b(a1a2) 5 l(a1)l(a2)Id + b(a1) +
b(a2) 5 l(a1)Id + b(a1) + l(a2)Id + b(a2) 5 (l ? b)(a1) + (l ? b)(a2), then l
? b is a homomorphism.

(iii) Now recall that the elements of the form l(a)Id belong to ker(p)
and that b(ker( p)) , ker(p). Therefore, if a P ker( p), then p + (l ? b)(a)
5 p(l(a)Id + b(a)) 5 p(l(a)Id ) + p(b(a)) 5

∧
Id. Hence (l ? b)(ker( p)) ,

ker(p). These facts show that l ? b is an element of U.
(iv) An easy calculation, similar to (ii), shows that (l, b) . l ? b is

an action.
(v) Assume that l ? b 5 b; then for all a in SU(n) Vs R, we have that

l(a)Id + b(a) 5 b(a); therefore l(a)Id 5 Id, and l(a) 5 1, i.e., l 5 1. Hence
the action is free. QED

Theorem 2. Let b1 and b2 be elements in U. Then Q(b1) 5 Q(b2) if
and only if there exists an element l in U0 such that b1 5 l ? b2. In other
words, the fibers of Q are precisely the orbits of the action of the group U0.

Proof. (⇒) Assume that Q(b1) 5 Q(b2). Let l̃ be the following
composite:

SU(n) Vs R →D (SU(n) Vs R) 3 (SU(n) Vs R)

—–→
b13b2

8(*) 3 8(*) →m̃ 8(*)

where D is the diagonal map and m̃(A, B) 5 A + B21. By Proposition 3, m̃
is continuous, hence l̃ is continuous. Since p(b1(a) + b2(a)21) 5 p(b1(a)) +
p(b2(a))21 5 Q(b1)( p(a)) + Q(b2)( p(a))21 5 Îd, then l̃(a) 5 b1(a) + b2(a)21

P ker(p) 5 U(1)Id. Using this fact, we have that l̃(a1a2) 5 b1(a1a2) +
b2(a1a2)21 5 b1(a1) + b1(a2) + b2(a2)21 + b2(a1)21 5 b1(a1) + b2(a1)21 + b1(a2)
+ b2(a2)21 5 l̃(a1) + l̃(a2), i.e., l̃ is a continuous homomorphism such that
l̃(SU(n) Vs R) , U(1)Id and b1(a) 5 l̃(a) + b2(a). Since i: U(1) → 8(*)
given by i(z) 5 zId is a topological embedding and a homomorphism, we
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have a continuous homomorphism l: SU(n) Vs R → U(1) such that i + l 5
l̃, and clearly b1 5 l ? b2.

(⇐) Assume that b1 5 l ? b2. Since l(a)Id , ker(p), then we have
that Q(b1)( p(a)) 5 Q(l ? b2)( p(a)) 5 p((l ? b2)(a)) 5 p(l(a)Id + b2(a)) 5
p(b2(a)) 5 Q(b2)( p(a)). Therefore Q(b1) 5 Q(b2). QED

Corollary 2. Let r: U(n) → 8(*̂) be a projective representation. Then
there is a bijection between the group U0 and Q21({r}).

Proof. By the theorem, Q21({r}) coincides with the orbit of any element
b in Q21({r}). But by Proposition 4, the action is free, so that the orbit of
any point is in bijective correspondence with the group U0. QED

Remark 6. Once we choose an element b in Q21({r}), we have a bijection
from U0 to Q21({r}) given by l . l ? b. So, in general there is no canonical
way to identify Q21({r}) with the group U0. However, when r is the trivial
representation ĉ given by ĉ(A) 5 Îd, there is a canonical element c in Q21({ĉ}),
namely, the trivial unitary representation given by c(a) 5 Id, and in this case
Q21({ĉ}) can be identified with the representations U0 through l . l ? c.

Remark 7. The bijection between the set P of projective representations
of U(n) and the orbits of U under the action of U0 is given by the map
[b] . Q(b).

Finally, the following theorem, together with Theorem 2 above, allows
a classification of the projective representations of U(n) in terms of unitary
representations of SU(n) and one-parameter unitary groups, satisfying cer-
tain conditions.

Theorem 3. There is a canonical bijection between U and the set of pairs
( f1, f2) which satisfy the following conditions:

(i) f1: SU(n) → 8(*) and f2: R → 8(*) are both continuous
homomorphisms.

(ii) f2(1) P U(1)Id.
(iii) f1(A ? t) 5 f2(t)21 + f1(A) + f2(t) for all A in SU(n) and t in R.

Proof. Let b: SU(n) Vs R → 8(*) be an element in U. Let i1: SU(n)
→ SU(n) Vs R and i2: R → SU(n) Vs R be the canonical inclusions. Then
we associate to b the pair (b + i1, b + i2); clearly both are continuous
homomorphisms. Since b(i(Z)) , U(1)Id, then b + i2(1) 5 b + i(1) is an
element of U(1)Id. Since b is a homomorphism, and any element (A, t) in
SU(n) Vs R can be written as (A, t) 5 (I, t)(A, 0) 5 i2(t)i1(A), then b((A,
t)(A8, t8)) 5 b + i2(t) + b + i1(A) + b + i2(t8) + b + i1(A8); but b((A, t)(A8, t8))
5 b((A ? t8)A8, t 1 t8) 5 b(i2(t 1 t8)i1((A ? t8)A8)) 5 b + i2(t) + b + i2(t8) +
b + i1(A ? t8) + b + i1(A8), then b + i1(A ? t8) 5 b + i2(t8)21 + b + i1(A) + b + i2(t8).
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Conversely, given a pair ( f1, f2) satisfying (i)–(iii), we define f : SU(n) Vs

R → 8(*) by f (A, t) 5 f2(t) + f1(A). This map can be written as the composite

SU(n) Vs R —–→
f13f2

8(*) 3 8(*) →s
8(*) 3 8(*) →m 8(*)

where s(A, B) 5 (B, A). By Proposition 3, m is continuous, hence f is
continuous. Now, using property (iii), we can write f ((A, t)(A8, t8)) 5 f ((A
? t8)A8, t 1 t8) 5 f2(t) + f2(t8) + f1(A ? t8) + f1(A8) 5 f2(t) + f2(t8) + f2(t8)21 +
f1(A) + f2(t8) + f1(A8) 5 f2(t) + f1(A) + f2(t8) + f1(A8) 5 f (A, t) + f (A8, t8), i.e., f
is a homomorphism; and f (I, n) 5 f2(n) + f1(I ) 5 f2(n) + Id 5 f2(n), which
is an element of U(1)Id, by property (ii).

Finally, one construction is the inverse of the other. Indeed, let f1 5 b
+ i1 and f2 5 b + i2; then f (A, t) 5 b + i2(t) + b + i1(A) 5 b(i2(t)) + b(i1(A))
5 b(I, t) + b(A, 0) 5 b((I, t)(A, 0)) 5 b(A, t), i.e., f 5 b; conversely, given
f constructed from the pair ( f1, f2), define the pair ( f + i1, f + i2); then f + i1(A)
5 f (A, 0) 5 f2(0) + f1(A) 5 Id + f1(A) 5 f1(A) and f + i2(t) 5 f (I, t) 5 f2(t)
+ f1(I ) 5 f2(t) + Id 5 f2(t), i.e., f + i1 5 f1 and f + i2 5 f2. QED

6. UNITARY REPRESENTATIONS ASSOCIATED TO A
PROJECTIVE REPRESENTATION

In this section we shall construct all the unitary representations of Ũ(n)
associated to a projective representation of U(n).

Proposition 5. Let G be a connected simple Lie group and let K be a
Lie group such that dim G . dim K. Let g: G → K be a continuous
homomorphism. Then g is trivial, i.e., g(g) 5 e, for all g P G.

Proof. By Warner (1983), any continuous homomorphism between Lie
groups is smooth, so we can assume that g is smooth. Consider the differential
of g at the identity, dg: & → _, where & and _ are, respectively, the Lie
algebras of G and K. Since G is simple, ker(dg) is either 0 or &. Suppose
that ker(dg) 5 0; then dim & 5 dim dg(&) # dim _, which is a contradiction
because dim & . dim _. Therefore ker(dg) 5 &, i.e., dg [ 0, and since G
is connected, by Warner (1983), g is trivial. QED

Remark 8. Let R* 5 hom(R, U(1)) be the group of continuous homo-
morphisms x: R → U(1), where (x1x2)(t) 5 x1(t)x2(t). Then there is an
isomorphism from R to R* given by r ° xr , where xr(t) 5 e2pirt. This can
be shown as follows. Recall that if G is a Lie group, then we have a function
from its Lie algebra & to the set of one-parameter subgroups of G, given by
X ° exp(tX ). Let c: R → G be a one-parameter subgroup. Since c is the
maximal integral curve of the left-invariant vector field X 5 ċ(0) starting
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from e, then c(t) 5 exp(tX ). Therefore the function X ° exp(tX ) is a bijection.
Taking G 5 U(1) and using the fact that continuous homomorphisms between
Lie groups are smooth (Warner, 1983), we get a bijection between iR and
R*, which in this case is clearly an isomorphism of groups. If we also consider
the isomorphism from R to iR given by r ° 2pir, then we get an isomorphism
R > R* mapping r to xr .

Definition 5. Let G be a topological group. We denote by hom(G, 8(*))
the set of continuous homomorphisms from G to 8(*), i.e., the set of
unitary representations of G, and by hom(G, 8(*̂)) the set of continuous
homomorphisms from G to 8(*̂), i.e., the set of projective representations
of G.

Proposition 6. Let G be a connected, simply connected, simple Lie group
such that H 2(&, R) 5 0. Then the map p: 8(*) → 8(*̂) induces a bijection
p

*
: hom(G, 8(*)) → hom(G, 8(*̂)), where p

*
(b) 5 p + b.

Proof. By Bargmann’s theorem, given r P hom(G, 8(*̂)), there is an
element r̃ in hom(G, 8(*)) such that p + r̃ 5 r, i.e., p*(r̃) 5 r. Therefore
p

*
is surjective. To show that p

*
is injective, consider b1 and b2 in hom(G,

8(*)) and assume that p
*
(b1) 5 p

*
(b2). Then for all elements g in G we

have that p(b1(g)) 5 p(b2(g)). Hence p(b1(g)b2(g)21) 5 Îd. Define g: G →
8(*) by g(g) 5 b1(g)b2(g)21. By Proposition 3, 8(*) is a topological group,
so that g is continuous. Furthermore, g(G) , U(1)Id > U(1), whose elements
commute with any element in 8(*). Then g(g1g2) 5 b1(g1g2)b2(g1g2)21 5
b1(g1)b1(g2)b2(g2)21b2(g1)21 5 b1(g1)b2(g1)21b1(g2)b2(g2)21 5 g(g1)g(g2).
Therefore g: G → U(1) is a continuous homomorphism, so by Proposition
5, g is trivial. Then 1 5 g(g) 5 b1(g)b2(g)21 for all g in G; thus b1 5 b2

and p
*

is injective. QED

Definition 6. We define an action ?: R 3 hom(R, 8(*)) → hom(R,
8(*)) by (r ? l)(t) 5 e2pirtId + l(t).

Lemma 2. The action is well defined and free.

Proof. (i) (r ? l)(t) is in 8(*) since it is the composition of elements
of 8(*).

(ii) r ? l: R → 8(*) is continuous since it is the composite:

R → U(1) 3 8(*) → 8(*) 3 8(*) → 8(*)

t ° (e2pirt, l(t)) ° (e2pirtId, l(t)) ° e2pirtId + l(t)

(iii) r ? l is a homomorphism because (r ? l)(t1 1 t2) 5 e2pir(t11t2)Id +
l(t1 1 t2) 5 e2pirt1Id + l(t1) + e2pirt2Id + l(t2) 5 (r ? l)(t1) + (r ? l)(t2).
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(iv) It is an action because (0 ? l)(t) 5 l(t) and (r1 1 r2) ? l(t) 5
e2pi(r11r2)tId + l(t) 5 (e2pir1te2pir2t)Id + l(t) 5 e2pir1tId + e2pir2tId + l(t) 5 r1 ?
(r2 ? l)(t).

(v) Assume that r ? l 5 l; then (r ? l)(t) 5 e2pirtId + l(t) 5 l(t) for
all t in R.

This implies that e2pirt 5 1 for all t in R, therefore r 5 0. QED

Proposition 7. Let l1, l2: R → 8(*) be continuous homomorphisms.
Then p + l1 5 p + l2 if and only if there exists r in R such that l1 5 r ? l2.

Proof. Assume that r ? l1 5 l2. Then l2(t) 5 e2pirtId + l1(t) and
p(l2(t)) 5 p(e2pirtId ) + p(l1(t)) 5 p(l1(t)). Therefore, p + l1 5 p + l2.

Assume that p + l1 5 p + l2. Then p(l1(t)l2(t)21) 5 Îd and we have
that l1(t)l2(t)21 is in ker(p) 5 U(1)Id, for all t in R. Define c: R → U(1)
by c(t) 5 l1(t)l2(t)21. By Proposition 3, 8(*) is a topological group, so c
is continuous. Furthermore, c(t1 1 t2) 5 l1(t1 1 t2)l2(t1 1 t2)21 5 l1(t1) +
l1(t2) + l2(t2)21 + l2(t1)21 5 l1(t1) + l2(t1)21 + l1(t2) + l2(t2)21 5 c(t1) + c(t2).
Therefore, c is a continuous homomorphism. By Remark 8, there exists a
unique real number r such that c(t) 5 e2pirt. Hence l1(t) 5 c(t)l2(t) 5
e2pirt Id + l2(t) 5 (r ? l2)(t), so that l1 5 r ? l2. QED

Proposition 8. The map p: 8(*) → 8(*̂) induces a surjection

p
*
: hom(R, 8(*)) → hom(R, 8(*̂))

given by p
*
(l) 5 p + l, whose fibers are in one-to-one correspondence with R.

Proof. Since R satisfies the hypothesis of Bargmann’s theorem, given
any one-parameter subgroup d: R → 8(*̂), there exists d̃ in hom(R, 8(*))
such that p + d̃ 5 d, i.e., p

*
(d̃) 5 d, so p

*
is surjective.

By Proposition 7, given d in hom(R, 8(*̂)), p21

*
({d}) coincides with

an orbit of the action of R on hom(R, 8(*)). By Lemma 2, this action is
free, so each orbit is in one-to-one correspondence with the group R. QED

Remark 9. Let l be in hom(R, 8(*)). Since l is a strongly continuous
one-parameter unitary group, then, by Stone’s theorem (Reed and Simon,
1972), there exists a unique Hermitian (though not necessarily bounded)
operator H on * such that l(t) 5 eiHt.

Proposition 9. U0 5 { f : SU(n) Vs R → U(1). f is a continuous homo-
morphism} is isomorphic to R.

Proof. We will give first an isomorphism between U0 and R* 5 {x: R
→ U(1).x is a continuous homomorphism}. Let f be in U0 and consider f +
i1: SU(n) → U(1). Then by Proposition 5 we know that f + i1 is constant. So
we define a function F: U0 → R* by F( f ) 5 f + i2: R → U(1). Given x in
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R*, consider the map x: SU(n) Vs R → U(1) given by x(A, t) 5 x(t). Since
x 5 x + p2, where p2: SU(n) Vs R → R is the projection, and both x and
p2 are continuous homomorphisms, then x is in U0. Furthermore, F(x) 5
x + i2 5 x, so F is surjective.

Now let f1, f2 be in U0; then F( f1f2)(t) 5 ( f1f2) + i2(t) 5 f1(i2(t)) f2(i2(t))
5 f1 + i2(t)f2 + i2(t) 5 F( f1)(t)F( f2)(t). Hence F is a homomorphism.

Let f be in U0 and assume that F( f ) is trivial, i.e., F( f )(t) 5 1 for all
t in R. Any element (A, t) in SU(n) Vs R can be written as (A, t) 5 (I, t)(A,
0) 5 i2(t)i1(A); therefore f (A, t) 5 f + i2(t)f + i1(A). Since F( f ) 5 f + i2 is
trivial, then f (A, t) 5 f + i1(A), but we saw that f + i1 is also trivial, so f is
trivial, and then F is injective. Therefore F is an isomorphism.

Finally, by Remark 8, there is an isomorphism from R to R* given by
r . xr , where xr(t) 5 e2pirt. Using both isomorphisms, we get an isomorphism
from R to U0 given by r . fr : SU(n) Vs R → U(1), where fr(A, t) 5
e2pirt. QED

Theorem 4. Let r: U(n) → 8(*̂) be a projective representation. Then
there is a bijection between Q21({r}) and the set {(r̊̃ + i1, r ? (r̊̃ + i2).r P
R}, where r̊̃: SU(n) Vs R → 8(*) is any fixed representation in Q21({r})
and where r ? (r̊̃ + i2)(t) 5 e2pirtId + r̊̃(Id, t). The bijection is given by (r̊̃ +
i1, r ? (r̊̃ + i2)) . r̂ : SU(n) Vs R → 8(*), where r̂(A, t) 5 e2pirtId + r̊̃(A, t).

Proof. We first recall that the existence of r̊̃ is given by Bargmann’s
theorem. Now, by Theorem 3, there is a canonical bijection between Q21({r})
and the set ! of pairs ( f1, f2) which satisfy the conditions (i)–(iii) plus the
following condition (iv) to ensure that the elements belong to Q21({r}):

(iv) Q( f ) 5 r, where f (A, t) 5 f2(t) + f1(A).

Let @ be the set of pairs {(r̊̃ + i1, r ? (r̊̃ + i2).r P R} in the statement
of the theorem. We will show that ! 5 @.

Let (r̊̃ + i1, r ? (r̊̃ + i2)) be in @. Clearly r̊̃ + i1 is a continuous homo-
morphism, and the same is true for r ? (r̊̃ + i2) because 8(*) is a topological
group, so (i) is satisfied.

Since r̊̃ is an element of U, then r̊̃ + i2(1) 5 r̊̃(Id, 1) belongs to U(1)Id,
hence r ? (r̊̃ + i2)(1) 5 e2pirId + r̊̃(Id, 1) is in U(1)Id, so (ii) is satisfied.

By Theorem 3, r̊̃ + i1(A ? t) 5 r̊̃ + i2(t)21 + r̊̃ + i1(A) + r̊̃ + i2(t). Since
the elements of the form e2pirtId commute with any operator, the right-hand
side is equal to r̊̃ + i2(t)21 + e22pirtId + r̊̃ + i1(A) + e2pirtId + r̊̃ + i2(t) 5 r ?
(r̊̃ + i2)(t)21 + r̊̃ + i1(A) + r ? (r̊̃ + i2)(t). Therefore the pair in @ satisfies (iii).

Condition (iv) is also fulfilled since Q(r̂)( p(A, t)) 5 p + r̂(A, t) 5
p(e2pirtId ) + p(r̊̃(Id, t)) + p(r̊̃(A, 0)) 5 r( p(Id, t)) + r( p(A, 0)) 5 r( p((Id,
t)(A, 0))) 5 r( p(A, t)). Therefore @ , !.
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Conversely, let ( f1, f2) be an element in !. Consider r + i: SU(n) →
8(*̂); since p + r̊̃ + i1 5 r + p + i1 5 r + i, then r̊̃ + i1 is a lifting of r + i.
Let A be in SU(n); then by (iv) we have that Q( f )(i(A)) 5 Q( f )( p(A, 0)) 5
p( f (A, 0)) 5 p( f2(0) + f1(A)) 5 p( f1(A)) 5 r + i(A), i.e., f1 is also a lifting
of r + i. By Proposition 6, f1 5 r̊̃ + i. Now consider r + a: R → 8(*̂), since
p + r̊̃ + i2 5 r + p + i2 5 r + a, then r̊̃ + i2 is a lifting of r + a. By (iv) we
have that Q( f )(a(t)) 5 Q( f )( p(Id, t)) 5 p( f (Id, t)) 5 p( f2(t) + f1(Id )) 5
p( f2(t)) 5 r(a(t)), i.e., f2 is also a lifting of r + a. By Proposition 7, there
exists r in R such that f2 5 r ? (r̊̃ + i2). Therefore ( f1, f2) 5 (r̊̃ + i, r ? (r̊̃ +
i2)) and then ! , @.

Finally, by Theorem 3, the bijection between ! 5 @ and Q21({r}) is
given by mapping a pair ( f1, f2) to f, where f (A, t) 5 f2(t) + f1(A); therefore
(r̊̃ + i1, r ? (r̊̃ + i2)) is mapped to r̂, where r̂(A, t) 5 e2pirt Id + r̊̃(A, t). QED
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